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A simple process/simulation model
We'll start with a very simple model, a population of individuals (humans
or animals or pathogens) that grow or die.

We'll implement the model as a discrete time equation, given by:

Pt+dt = Pt + dt(gPt − dPPt)

Pt are the number of people/pathogens in the population at time t, dt is some
time step, g is the growth/birth rate and dP is the death rate.

What processes exactly does this model describe 'translated into words'?
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Pt+dt = Pt + dt(gPt − dPPt)

Pt are the number of people/pathogens in the population at time t, dt is some
time step, g is the growth/birth rate and dP is the death rate.

Why do we multiply by the time step, dt?



A simple process/simulation model
We'll start with a very simple model, a population of individuals (humans
or animals or pathogens) that grow or die.

We'll implement the model as a discrete time equation, given by:

Pt+dt = Pt + dt(gPt − dPPt)

Pt are the number of people/pathogens in the population at time t, dt is some
time step, g is the growth/birth rate and dP is the death rate.

If we started with 100 people/pathogens at time t=0, had a growth rate of
12 and death rate of 2 (per year or day), and took time steps of 1 year (or
day), how many individual would we have after 1,2,3... years/days?



A simple simulation model - variant 1
Original:

Pt+dt = Pt + dt(gPt − dPPt)

Alternative:

Pt+dt = Pt + dt(g − dPPt)

What's the difference? Is this a good model?



A simple simulation model - variant 2
Original:

Pt+dt = Pt + dt(gPt − dPPt)

Alternative:

Pt+dt = Pt + dt(gPt − dP)

What's the difference? Is this a good model?



Discrete time models
Pt+dt = Pt + dt(gPt − dPPt)

The model above is updated in discrete time steps (to be chosen by the
modeler).

Good for systems where there is a "natural"" time step. E.g. some animals
always give birth in spring or some bacteria divide at specific times.

Used in complex individual based models for computational reasons.

For compartmental models where we track the total populations (instead
of individuals), continuous-time models are more common. They are
usually formulated as ordinary differential equations (ODE).

If the time-step becomes small, a discrete-time model approaches a
continuous-time model.



Continuous time models
Discrete:

Pt+dt = Pt + dt(gPt − dPPt)

Re-write:

Pt+dt − Pt
dt

= gPt − dPPt

Continuous:

dP
dt

= gP − dPP

If we simulate a continuous time model, the computer uses a smart
discrete time-step approximation.



Some notation
The following are 3 equivalent ways of writing the differential equation:

dP(t)
dt

= gP(t) − dPP(t)

dP
dt

= gP − dPP

Ṗ = gP − dPP

We will use the 'dot notation'.



Some terminology
Ṗ = gP − dPP

The left side is the instantanous change in time of the indicated variable.

Each term on the right side represents a (often simplified/abstracted)
biological process/mechanism.

Any positive term on the right side is an inflow and leads to an increase of
the indicated variable.

Any negative term on the right side is an outflow and leads to a decrease
of the indicated variable.



Extending the model
Ṗ = gP − dPP

For different values of the parameters g and dP, what broad types of
dynamics/outcomes can we get from this model?



Extending the model
Ṗ = gP − dPP

How can we extend the model to get growth that levels off as we reach some
high level of P?



Model with saturating growth
Ṗ = gP(1 −

P
Pmax

) − dPP

We changed the birth process from exponential/unlimited growth to
saturating growth.



Adding a second variable
A single variable model is 'boring'.

The interesting stuff happens if we have multiple compartments/variables
that interact.

Let's introduce a second variable.

Let's assume that P is a population of some animal or some bacteria,
which gets attacked and consumed by some predator, e.g. another animal
or the immune system. We'll pick the letter H for the predator (any label is
fine).



Adding a second variable
Ṗ = gP(1 −

P
Pmax

) − dPP ±  ?

Ḣ = ?

The predator attacks/eats the prey. What process could we add to the P-
equation to describe this?



Adding a second variable
Ṗ = gP(1 −

P
Pmax

) − dPP − kPH

Ḣ = ?

The more P there is, the more the predator will grow, e.g. by eating P or
by receiving growth signals.

What term could we write down for the growth dynamics of H?

Finally, H individuals have some life-span after which they die. How can
we model this?



Predator-prey model
The model we just built is a version of the well-studied predator-prey
model from ecology.

Ṗ = gPP(1 −
P

Pmax
) − dPP − kPH

Ḣ = gHPH − dHH

The discrete-time version of the model is:

Pt+dt = Pt + dt(gPPt(1 −
Pt
Pmax

) − dPPt − kPtHt)

Ht+dt = Ht + dt(gHPtHt − dHHt)



Bacteria and immune response model
The names of the variables and parameters are arbitrary. If we think of
bacteria and the immune response, we might name them B and I instead.

Ḃ = gB(1 −
B

Bmax
) − dBB − kBI

İ = rBI − dII

Bt+dt = Bt + dt(gBt(1 −
Bt
Bmax

) − dBBt − kBtIt)

It+dt = It + dt(rBtIt − dIIt)



Ṗ = gPP(1 −
P

Pmax
) − dPP − kPH

Ḣ = gHPH − dHH

Ḃ = gB(1 −
B

Bmax
) − dBB − kBI

İ = rBI − dII

Graphical model representation
It is important to go back and forth between words, diagrams, equations.

Diagrams specify a model somewhat, but not completely. The diagrams
below could be implemented as ODEs (shown) or discrete time or
stochastic models.



Model exploration
We could mathematically analyze the model behavior with 'pencil and
paper' (or some software, e.g. Mathematica/Maple/Maxima). This only
works for simple models.

We could analyze the model behavior by simulating it.

To simulate, we need to implement the model on a computer, specify
starting (initial) conditions for all variables and values for all model
parameters.

Ṗ = gPP(1 −
P

Pmax
) − dPP − kPH

Ḣ = gHPH − dHH

Ḃ = gB(1 −
B

Bmax
) − dBB − kBI

İ = rBI − dII

The Basic Bacteria Model app in DSAIRM allows you to analyze this model
graphically.



The basic SIR model



The basic SIR model
We'll now look at the most fundamental/basic model for population level
infectious disease modeling.

This model tracks individuals (humans or animals) in 3 states, susceptible,
infected/infectious and recovered/removed. It is called the SIR model.

Ṡ = − bSI

İ = bSI − gI

Ṙ = gI

Only 2 processes are modeled, what are they?



SIR model with births and deaths
If we wanted to include births and deaths in our model, how could we do
that?

Ṡ = − bSI

İ = bSI − gI

Ṙ = gI



SIR model with births and deaths
One possible variant

Ṡ = m − bSI − nS

İ = bSI − gI − nI

Ṙ = gI − nR



Notation comment
If you read the literature, you'll see all kinds of letters used for variables
and parameters. That can be confusing but unfortunately unavoidable.

Look carefully at models and see how variables/parameters are defined. A
model that looks new might in fact be one that you know, just using
different notation.

These 2 models are the same!

Ṡ = m − bSI − nS

İ = bSI − gI − nI

Ṙ = gI − nR

ẋ = λ − bx − βxz
ẏ = − by − κy + βxz
ż = κy − bz



Terminology again



A simple virus infection model



A simple virus infection model

Uninfected Cells U̇ = n − dUU − bUV

Infected Cells İ = bUV − dII

Virus V̇ = pI − dVV − bgUV



A simple virus infection model

Dynamics of simple viral infection models. A) acute infection. B) chronic
infection.



Notation comment
If you read the literature, you'll see all kinds of letters used for variables
and parameters. That can be confusing but unfortunately unavoidable.

Look carefully at models and see how variables/parameters are defined. A
model that looks new might in fact be one that you know, just using
different notation.

These 2 models are the same as the model we just saw!

Ṫ = s − kT − βTV
˙
T ∗ = βTV − dT ∗

V̇ = nT ∗ − cV − βgTV

ẋ = λ − dx − βxv
ẏ = βxv − ay
v̇ = κy − uv − βgxv



U̇ = m − dUU − bUV

İ = bUV − dII − nI

Ḋ = dII

V̇ = pI − dVV − gbUV

Ṡ = m − nS − bSE

İ = bSE − gI − nI

Ṙ = gI − nR

Ė = pI − cE − kbSE

Matching models
Can you spot the differences?



A larger virus infection model



Virus and Immune Response Model
The immune response is incredibly complex, we still don't know how to
model it in much detail.

We can nevertheless build and explore models that are a (hopefully) good
balance between realism and abstraction.

We'll consider a virus infection model that includes the following
components/variables:

U - uninfected cells

I - infected cells

V - (free) virus

F - innate immune response

T - CD8 T-cells

B - B-cells

A - Antibodies



Model Diagram



Model Equations
U̇ = n − dUU − bUV

İ = bUV − dII − kTTI

V̇ =
pI

1 + sFF
− dVV − bUV − kAAV

Ḟ = pF − dFF +
V

V + hV
gF(Fmax − F)

Ṫ = FVgT + rTT

Ḃ =
FV

FV + hF
gBB

Ȧ = rAB − dAA − kAAV



Learn more
DSAIDE package:

Basic SIR Model app.

Characteristics of ID app.

ID Patterns app.

Environmental Transmission app.

DSAIRM package:

Basic Bacterium Model app.

Basic Virus Model app.

Virus and Immune Response app.


